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Abstract:

Background:

Various effects of steroid hormone activity cannot easily be explained by the action of classical nuclear receptors and genomic signal
transduction pathways. These activities are manifested principally as rapid processes, lasting from seconds to minutes, resulting in
changes  in  ion  transduction,  calcium intracellular  concentration,  and  level  of  the  second  messengers,  which  cannot  be  realized
through the genomic pathway. Hence, it  has been proposed that other kinds of mediators should be involved in steroid-induced
processes,  namely  receptors  located  on the  cell  surface.  The search  for  their  chemical  nature  and role  is  of  utmost  importance.
Current state of knowledge confirms their relation to GPCRs. Moreover, it seems that almost every nuclear receptor specific for
steroid hormone family has its membrane-bound equivalent.

Objective:

In this review, we summarize current state of knowledge about nuclear and membrane receptors for progesterone, and describe their
potential functions alone, as well as in cooperation with other receptors.

Conclusion:

In the light of common expression, both in species and organs, membrane receptors could play a role that is at least comparable to
nuclear receptors. Further exploration of membrane receptor-dependent signaling pathways could give a new insight in the treatment
of many endocrine and oncological pathologies.

Keywords: Progesterone, Nuclear progesterone receptors, Membrane progesterone receptors, PGRMC1, Classical and non-classical
signaling pathways.

1. INTRODUCTION

Progesterone (P4)  is  a  21-carbon steroid  belonging to  the  family  of  pogestagens.  It  is  synhesized in  the  corpus
luteum, placenta, brain and adrenal gland. The nuclear progesterone receptor (nPR) with a gene located on chromosome
11 (11q13) is considered as a main target for P4. Its expression fluctuates in the ovary and endometrial layer of uterus
during either physiologic and pathologic states [1 - 3]. The role of nuclear receptors for progesterone and other steroids,
as well as molecular pathway mediated by them are widely recognized and achieved a significant position in the clinical
practice  [1,  2].  However  there  still  exist  some  effects  controlled  by  steroid  hormones,  which  could  not  be  easily
explained with the activity of classical, genomic pathway. These effects apear in the course of shorter period of time
and take place in different cells and tissues. Thus, it has been suggested that P4 could act through extragenomic, non-
classical pathways with crucial role of membrane receptors [2]. Besides PR, also other steroid hormone receptors can be
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localized in cell membrane. A number of non-genomic pathways dependent on membrane receptors, with characteristic
rapid effects, i.e. the influence of estrogens on neurons, testosterone on macrophages and prostate cells, as well as the
activity of glucocorticosteroids, aldosterone, triiodothyronine, thyroxine, retinoids and calcitriol, have been described [4
- 7]. Membrane receptors seem to be specific variants of nuclear receptors and are formed through alternative splicing
or post-translational modification [8].

2. GENOMIC PATHWAY

Classical receptors for P4 belong to the superfamily of nuclear receptors, which comprises also receptors for other
steroids,  thyroid hormones,  retinoic acid and vitamin D,  as  well  as  the so-called ‘small  receptors’,  for  instance the
farnesoid  X  receptor  (FXR),  which  binds  bile  acids,  or  the  peroxisome  proliferator  activated  receptor  (PPAR),
responsible for carbohydrate-lipid homeostasis [4, 9]. Proper ligands for many of these receptors were not recognized,
hence they were called the ‘orphan receptors’ [4]. Currently, they are known to act as ligand-dependent transcriptional
factors which regulate numerous physiologic processes through binding with specific hormone response element (HRE)
sequences of the target genes [10, 11].

Two basic receptor isoforms are nPRA and nPRB, encoded by the same gene but characterized by distinct initiation
sites  of  translation  [9,  10,  12].  The  primary  structure  of  the  nPR  receptor  is  composed  of  domains  with  different
conservativeness.  The  N-end  is  necessary  for  full  transcriptional  activity  and  is  responsible  for  various,  promoter-
dependent properties of cell-specific nPR isoforms. Among functional domains, the DNA-binding domain (DBD; C
region), less conservative ligand-binding domain (LBD; E region), and domains constitutively activating transcription
(A/B region), can be distinguished [9, 10]. There are also two autonomous domains which activate transcription in the
receptor  structure:  constitutive-activation  domain  AF-1  on  the  N-end,  and  AF-2  that  is  highly-conserved,  ligand-
dependent  and  localized  on  the  C-end  [13].  The  AF-1  structure  is  not  conserved  and  little  is  known  about  its
coactivators.  The  activity  of  AF-2  depends  on  transcriptional  factor  belonging  to  the  family  of  p160  proteins.
Additionally, nPRB contains an AF-3 domain in its chain (which is absent in nPRA) and probably inhibits, both its ID
(inhibitory domain) and transcriptional activity [9, 14]. Also, nPR contains a short,  proline-rich motif (amino acids
421-428),  which  mediates  an  interaction  between  the  cytoplasmic  domain  of  the  receptor  and  the  SH3  membrane
domain (Src Homology 3 – domain of SRC tyrosine kinase) after binding with P4 [15].

The aspects of posttranslational modifications in ligand-dependent or ligand–independent manner, are crucial for
nPR  stability,  localization  and  acivity  [16].  They  affect  also  glucocorticoid  receptor  (GR)  complex  formation  and
interaction with other agents or recruitment of cofactors [16, 17]. These modifications could be tissue-specific [18] and
involve phosphorylation, ubiquitination, methylation and so called SUMOylation (addition of small ubiquitin-related
modifier  –  SUMO-peptides).  What  resembles  the  process  of  ubiquitination  is  a  similarity  of  SUMO  proteins  to
ubiquitin. The difference is that unlike ubiquitination, the process of posttranslational SUMOylation does not result in a
degradation of target cells. It rather influences protein stabilization, localization, nuclear translocation, and particularly
transcriptional  activity.  PR  SUMOylation  significantly  suppresses  transcriptional  activity  and  vice  versa,  lack  of
SUMOylation induces PR transformation, especially nPRA, into a strong transcriptional activator [16]. Addition of
SUMO peptides to lysine residues decreases GR transcriptional activity by corepressors recruitment, e.g. DAXX protein
(death-domain  associated  protein).  Furthermore,  it  cannot  be  excluded  that  SUMOylation  induces  a  genome-wide
chromatin occupancy redistribution of GR [17].

It  seems  that  nPRA  is  vital  for  feminine  reproductive  functions  and  fertility,  while  nPRB  determines  proper
development  of  the  mammary gland in  response  to  P4 [17,  19,  20].  It  has  been stated  that  female  mice  revealed a
number of disorders, e.g. different sexual behavior, improper gonadotropin secretion, anovulatory cycles, deregulated
uterine function, and invalid proliferation of the ductal or acinar cells in mammary glands after silencing genes for both
nPR isoforms. The nPR receptor is also essential  for the regulation of thymus involution during pregnancy and for
augmented,  P4-dependent,  regulation  of  endothelial  and  smooth  muscle  cells  proliferation  in  response  to  vessel
detriment in the cardiovascular system [21].

The proportion of subtypes B/A of the nPR receptor varies in P4 target tissues and reveals interspecies differences.
In chick oviduct,  the number of both subtypes is more or less equal.  In the human and mice myometrium nPRA is
predominant,  while in rabbit  uterus the B isoform is  the only one which is  expressed [22].  In humans,  the level  of
expression  of  both  isoforms  is  different  in  the  course  of  the  menstrual  cycle  and  in  various  types  of  cells.  In  the
endometrium, their expression undergoes specific fluctuations: it increases during the follicular phase and decreases
after the ovulation [22, 23]. Estrogens induce mRNA and protein expression of both nPRs, especially of nPRB in chick
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oviduct, rat uterus and human endometrial cells. This activity increases the B/A ratio in favor of isoform B. In turn, nPR
isoforms are down-regulated in the presence of their specific ligand – P4 [22, 23]. Diverse distribution of nPR isoforms
in humans could implicate crucial clinical consequences. The nPRB/nPRA ratio determines the response of the tissue to
P4 agonists or antagonists [22]. Disturbed isoform balance or overexpression of one of them could contribute to the
development of carcinomas in mammary glands, ovary and endometrium, or correlate with tumor progression into more
aggressive forms [24].

Inactive nPR is associated with chaperone proteins (HSP) in the cytoplasm [25]. Steroid hormones enter the interior
of the cell both, passively by transmembrane diffusion or with participation of transporters [4]. Subsequently, they bind
to intracellular receptors. Then, the receptors undergo conformational changes, chaperon proteins dissociate and the
DNA-binding domain gains higher affinity [4, 25]. The steroid-receptor complex migrates to the nucleus and the DNA-
binding domain is exposed. In the cell nucleus, the receptor dimerizes and joins its matching coactivators: SRC and
CBP (CREBP Binding Protein), and then interacts with HRE. The final effect of signal transduction is the initiation of
transcription and subsequently translation [9, 25]. This process involves the cell genome and it has been described as
the classical, genomic pathway. The completion of this process requires a significantly prolonged period of time in
comparison  to  shorter  non-classical,  extragenomic  pathways.  The  genomic  pathway  is  sensitive  to  transcription  or
translation inhibitors, like actinomycin D and cycloheximide, respectively [4].

3. NON-CLASSICAL PATHWAY

A  number  of  steroid  effects  cannot  be  simply  explained  by  functioning  of  the  classical,  genomic  mechanism.
Steroids were discovered to initiate rapid intracellular processes, unusual for nuclear signaling [26, 27]. They result in
changes  of  ion  channel  conductivity,  concentration  of  intracellular  calcium,  and  second  messengers  (like  cyclic
nucleotides), as well as modifications in the activity of Erk 1 and 2 kinases [26, 27]. The wide spectrum of cells and
tissues, where rapid, non-genomic effects appear, supports the fact that it is rather a universal process, and not a rare
phenomenon [4]. The non-genomic signaling could be relevant for proper development and function of the tissues and
organs [28].

Three different mechanisms of non-genomic (non-classical) pathway have been suggested: (1) ‘the side-effect’ of
the  classical  pathway  (especially  P4  and  estrogens);  (2)  non-specific,  direct  effects  at  the  level  of  cell  membrane
(principally in relation to glucocorticoids, because they are present at high concentrations), and (3) via non-classical
receptors [4]. Newly recognized receptor proteins not associated with previously described receptors, nuclear steroid
receptors, receptors for other ligands exhibiting similarity to steroids, and GABAa and oxytocin receptors which have
the ability to bind progestagens, have all been suggested as the components of this non-classical pathway [26]. It seems
that signaling initiated on the cell surface by binding hormones to specific membrane receptors is the most probable
among these three mechanisms [29]. Nonetheless, some aspects of progestagen activity remain unexplained [26]. The
biological  activity which is  mediated by membrane receptors could be both,  rapid like sperm motility,  and slightly
slower like oocyte maturation in fish or amphibians [26, 30].

Non-classical,  rapid  signal  transduction  of  P4  signaling  is  suggested  in  many  cells  and  tissues:  spermatozoa,
oocytes, corpora lutea, Leydig cells, as well as in uterine myometrium, hepatocytes, brain, and neoplastic cells of breast
carcinoma  [26,  31].  It  has  been  demonstrated,  that  the  acrosome  reaction  is  induced  with  mediation  of  membrane
receptors [32]. In some fishes (Genyonemus lineatus and Cynoscion regalis), decreased mPRα expression correlated
with impaired sperm motility (asthenozoospermia) [26]. More evidence has been delivered from studies concerning
membrane  receptors  expression  in  female  mice  and  rats.  Mice  with  nPR  gene  knock-out  demonstrated  fertility
perturbations. In rat ovaries, nPR has not been expressed in granulosa and corpora lutea cells, despite the fact that at the
same time P4 demonstrated its suppressor activity regarding the apoptosis of granulosa cells and its autocrine activity in
luteal cells [15, 33].

Further evidence for rapid membrane signaling is the steroid hormone activity in the central nervous system (CNS),
where the hormones dynamically induce neuronal excitability changes, neuroendocrine reactions and behavioral effects
[34].  Stimulation  of  the  membrane  receptor-dependent  GnRH  secretion  in  ventral  tegmental  area,  affecting  sexual
receptivity in rodents,  is  among these reactions.  In rats,  this  phenomenon appears 10 minutes after  i.v.  P4 infusion
(20-400 µg).  It  seems to be independent of nPR presence in ventromedial  hypothalamus as there is  no evidence of
nuclear  receptor  presence  in  this  localization.  Possibly,  that  activity  could  be  implemented  through
GABAa/benzodiazepines receptor [4, 26, 34, 35]. Not merely P4 per se, but also its metabolites seem to participate in
the extragenomic signal transduction. For instance, 5α-pregnan-3,20-dion and 3α-hydroksy-4-pregnan-20-one bind to
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membrane fractions of the neoplastic cells in breast carcinoma and porcine hepatocytes [4]. Other P4 metabolites, like
3α-hydroksy-5α-dihydroprogesterone,  or  deoxycorticosterone metabolites,  like 3α,5α-tetrahydrodeoxycorticosterone,
could modulate the function of the GABA receptor and act in the same subcellular localization as barbiturates [4, 34].

Modulated function of the immunological system in humans constitutes an another aspect arising from the analysis
of P4 activity spectrum. Some kind of diversity in the immunological response can be observed in pregnancy, in the
luteal phase of the menstrual cycle, or in the course of some diseases, especially those related to autoaggression. The
significance of membrane receptors in these issues is associated with the presence of membrane receptors: mPRα and
mPRβ on the leukocytes of the peripheral blood and T lymphocytes in the reproductive age, as well as on immortalized
cells of human T lymphocyte line (Jurkat cells), with simultaneous exclusion of nPR presence [26, 36]. It has been
proven that mPRα expression on CD8+ T lymphocytes increases approximately two-fold in the luteal phase of menstrual
cycle, but not on CD4+, what promotes humoral immune response [26].

It has been also demonstrated that PR, as estrogen receptors, is present on β cells of islets of Langerhans, and seems
to  regulate  the  functions  and  the  survival  of  β  cells  [37,  38].  P4  has  been  suggested  to  be  the  key  hormone  in  the
development of gestational diabetes, since it is known to be relevant for insulin secretion and pancreatic function [39].
The mechanism of P4 activity probably involves a decrease of GLUT4 expression and an impairment of glucose uptake
by the skeletal muscles. Simultaneously, PR antagonist – RU486, decreases glucose serum concentration [30]. It should
also be noted that P4 exhibits a suppressive influence on pancreatic cell proliferation, and the stage of malignancy of
tumors derived from the endocrine part of pancreas negatively correlates with PR immunoreactivity.

In P4 signalization the family of membrane heptahelical receptors coupled with G-proteins probably play the key
role [6].  Activation of G proteins results in cyclic nucleotide production, calcium transport,  and rapid activation of
kinase cascade [40]. Every impairment regarding this pathway could implicate disturbances on molecular level, like
trouble in cell signaling, i.e. in MAPK and PI3 activation. Some factors, like point mutations of membrane receptor
genes, can lead to the loss of phenylalanine, cysteine or tyrosine from the polypeptide chain, and impair proper receptor
localization in  cell  membrane.  Disturbances  in  proper  cell  signaling translate  into  clinical  features.  For  instance,  it
seems that the development of aggressive forms of breast carcinoma or resistance to tamoxifen could stem from lack of
palmitoylation or prolonged receptor existence in caveolae [40].

3.1. PAQR Family and mPR Receptor

The PAQR (Progesterone Adiponectin Q Receptor) family comprises highly conserved proteins with high amino
acid  homology,  occurring  in  many organisms,  from Eubacteria  to  Eutheria  [15,  41].  Its  members  are  identified  in
Arabidopsis, Drosophila, Caenorhabditis elegans, Xenopus, Danio rerio, Fugu, and birds [35, 42]. mPRs have their
receptor equivalents in the PAQR family. mPR is an oligomeric protein complex with the molecular mass of about 40
kDa. It includes three mPR subtypes: α, β and γ. The proofs that PAQR family members are bona fide P4 receptors
come from the studies on knockout animals with inoperative selected PAQR receptors. For example, in PRKO mice, a
decrease in LH secretion by P4 was mediated by a membrane progesterone receptor [26, 43].

The core region containing seven transmembrane domains and four highly conserved metal-binding motifs is the
common  and  dominant  feature  of  proteins  belonging  to  the  PAQR  family  [42].  Three  subfamilies  have  been
distinguished within the PAQR family on the basis of phylogenetic analysis: receptors related to adiponectin, membrane
receptors  for  progestins,  and  receptors  associated  with  hemolysin  III.  Generally,  11  proteins  typical  for  mammals
(PAQR  I-XI),  as  well  as  hemolysin  III  derived  from  Bacillus  cereus  (HLYIII),  YOLOOLC  and  Sacharomyces
cerevisiae proteins have been included [42, 44]. Adiponectin receptors: PAQR I, II, III, IV, YOLOO2C and other yeast
proteins, transmembrane adiponectin receptors 1 and 2 (adipoRs) derived from Eubacteria, are all involved in lipid
homeostasis regulation (especially fatty acids), as well as phosphate and zinc metabolism. PAQR I and II are involved
in adipokine (adiponectin) binding [15, 42].

Human gene for mPRα consists of three exons separated by two introns, gene for mPRβ has two exons and one
additional intron in comparison to mPRα, while the gene for mPRγ is composed of eight exons and seven introns [5,
44]. 5’-end is deprived of typical TATA sequence (TATA box); the proximal region is abundant in GC pairs. Some
motifs regulating DNA synthesis, like AP2, NF-AT, CIEBP and AhR/Arnt, have been identified [5]. The transcripts for
human mPR isoforms differ in molecular mass within the range of 2.8 to 5.8 kb [35]. In catfish, amino acid homology
among mPR subtypes, i.e. between α and β, is 50%, whereas among γ and the remaining two is less than 30% [44].

In general, both recombinant and wild receptor types display high affinity and specificity of P4 binding [26]. It is
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possible to distinguish extracellular N-end and intracellular C-end in their structure [35]. mPR, especially mPRα, is
directly  coupled  with  G-proteins  and  typically  activates  pertussis  toxin-sensitive  inhibitory  Gi  protein,  ultimately
leading to adenylate cyclase down-regulation and decrease in cAMP concentration [26]. However, the analysis of the
mPRβ  signal  path  revealed  that  the  receptor  is  not  sensitive  to  pertussis  and  cholera  toxins,  what  suggests  that  it
activates another G-protein, insusceptible to the aforementioned toxins [45, 46].

mRNA  for  mPRs  is  widely  distributed  in  both,  reproductive  and  non-reproductive  tissues  of  vertebrates,  what
indicates multipotent properties of membrane receptors [26]. Transcripts of mPRα have been identified in the ovaries
(corpus  luteum),  testes,  placenta,  amnion,  chorion,  uterus  (myometrium and  endometrium),  mammary  gland,  brain
(hypothalamus,  hypophysis),  heart,  intestines,  liver,  spleen,  skeletal  muscles,  adrenal  glands,  and  lungs  [26,  35].
Transcripts of mPRβ have been identified in the brain, hypophysis, ovaries and testes, and mPRγ - in the abdominal
aorta, and intestines [31, 35, 44]. A significant level of the expression of all three subtypes has been demonstrated only
in kidneys [35]. Therefore, mPRs expression seems to be tissue-specific. Subunit α dominates in reproductive tissues, β
in nervous tissue, and γ in the alimentary tract [42]. This is in contrast with the fact of tissue specificity of nuclear
receptors, which tend to appear primarily in brain and gonads, and have potential abilities to form heterodimers, what is
almost impossible in case of mPR in most human tissues [35]. Currently, the significance of such diverse distribution of
three mPR subtypes is not clear. One of the possible explanations for different mRNA mPRβ localization in the nervous
tissue  is  the  fact  that  mPRβ is  a  subtype  typical  for  tissues  derived from ectoderm.  On the  other  hand,  mPRβ was
obtained from mouse testes, which originate from the mesoderm. In turn, in Cynoscion regalis,  subtype α has been
found in the brain, what suggests that both, subtype β and α could be mediators of P4 activity initiated on the neuron
surface in vertebrate brain. Thus, subtype α mediates not only rapid, non-genomic P4 action in reproductive tissues
[35].

mPR isoforms differ among species in tissue distribution and the level of expression during the menstrual cycle,
thus  implying their  diverse  physiologic  functions  [26,  47].  mPRα,  γ  and PAQR IX expression  in  the  endometrium
depends on the phase of the ovarian cycle, and initiation of parturition is associated with significant reduction of mPR α
and β concentration in the myometrium. mPRα and PAQR IX are significantly expressed in the placenta [42]. What is
relevant,  changes  in  mPRs  distribution  constitute  not  only  morphological  but  also  functional  diversity.  Therefore,
modulation  of  mPRα  expression  has  been  demonstrated  in  both,  physiologic  (e.g.  during  the  ovarian  cycle),  and
pathologic  processes  (malignant  proliferative  processes,  e.g.  in  human  mammary  gland).  It  underlines  the  relevant
physiologic role of the receptor in a wide range of organs and tissues, and also during carcinogenesis [26].

3.2. PGRMC1 Receptor

PGRMC1 (Progesterone Receptor Membrane Component One) is the membrane protein with the molecular mass of
approximately 26-28 kDa. It has been primarily isolated from porcine liver microsomes, and then identified in other
tissues, like smooth muscle cells [12, 26, 41, 48 - 50]. In humans, the receptor was identified in 1996 and is known as
Hpr6.6 (Human P4 receptor). In rats, it is called RDA 288, with the mass of about 60 kDa, and it has been obtained
from hepatocytes and granulosa cells [26, 51]. In rat corpus luteum, RDA 288 acts against apoptosis.

PGRMC1  contains  a  single  transmembrane  domain  and  a  potential  internal  cytochrome  b5-like  heme/steroid-
binding sequence [26,  52,  53].  Both,  PGRMC1 and the  closely  related  PGRMC2 receptor,  belong to  the  family  of
receptors associated with membranes (MAPR) [12, 26, 54]. Their homologues belonging to the MAPR genes family
appear also in other Eucaryota, including nematodes, insects, yeast, and Arabidopsis thaliana. Another member of this
family – neudesin, has been also identified in mammals [26]. PGRMC1 is localized principally in the epithelium, within
cell membrane, cytosol and nucleus, and also in endoplasmic reticulum and Golgi apparatus [12, 55]. Its expression has
been demonstrated in many organs, i.e. uterus, liver, kidneys, adrenal glands and brain. It has been also identified in
tissues involved in drug metabolism [56 - 58].

PGRMC1  displays  moderately  high  affinity  to  P4.  It  constitutes  the  target  also  for  other  hormones,  like
glucocorticosteroids (corticosterone and cortisol) and 21-carbon steroids (testosterone). However, the affinity for P4 is
about 2-10 times higher than for testosterone and glucocorticosteroids [26]. PGRMC1 is capable of binding various
molecules, like heme (its main known function), cholesterol and its metabolites, cytochrome P450 proteins, and many
others [26, 59]. Combined with the affinity to such functionally and morphologically different molecules, the relevant
role of this receptor in the wide spectrum of processes, like steroid synthesis and metabolism, regulation of cholesterol
conversion,  axonal  guidance,  stress  response,  endocytosis,  cellular  homeostasis  and  influence  on  the  reproductive
behavior, has been indicated [15, 26, 50, 60]. Some drugs, for instance, haloperidol competes with endogenous P4 in
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binding to PGRMC1, while P4 binding is inhibited by such drugs as fluphenazine or carbapentane citrate [26]. This
makes the receptor and the associated proteins an attractive target of numerous, especially oncological therapies, firstly
-  due  to  high  affinity  to  steroids  and  drugs,  secondly  -  due  to  their  activity  promoting  neoplastic  cells  survival.
Hormonal regulation of PGRMC1 expression is tissue-specific.

Many of described activities and functions of PGRMC1 both, in reproductive system and other tissues and organs,
like central nervous system are obtained from the studies on animals with PGRMC1 gene knockout [50, 58]. In the
nervous  system,  PGRMC1 has  been  identified  in  hypothalamus,  circumventricular  organs,  ependyma of  the  lateral
ventricles and meninges, structures directly involved in the production of the cerebrospinal fluid, and osmoregulation.
In  rats,  PGRMC1/25  D-x  is  expressed  in  cerebellum  and  displays  age-dependence:  moderate  expression  in  young
individuals, mainly in Purkinje cells and cells of the granular layer, and low expression in mature individuals, only in
Purkinje cells. This expression appears to be sex-independent [26]. PGRMC1 displays pleiotropic activity. It affects
Schwann cell proliferation, and myelinization, synaptogenesis, memory and cognitive processes, neuronal excitability,
glial function, and progenitor cell proliferation [61 - 63]. Furthermore, PGRMC1 most likely mediates neuroprotective
action of P4, thus its expression increases after brain injury and it induces synthesis of brain-derived neurotrophic factor
(BDNF) in glial cells [63, 64]. It has been proven that P4 and its metabolites decrease cerebral edema, have beneficial
influence on blood-brain barrier function and intracranial pressure, and shorten recuperation time after brain damage as
far as restored cognitive and behavioral functions are concerned [63]. Also, neudesin exhibits neurotrophic activity. It
binds  with  heme  and  directly  stimulates  MAP kinase  and  neuronal  signalization  and  activity  [53].  That  activity  is
believed to be mediated by membrane receptors [63].

PGRMC  and  its  homologues  regulate  cholesterol  synthesis  through  cytochrome  P450,  Cyp51  (lanosterol
demethylase) activation, what plays a key role in cardiovascular diseases. PGRMC1 participation is also suggested in
metabolism of drugs, hormones and lipids. The aspect of regulation of cholesterol concentration is especially important
here  [26].  It  is  also  known  that  P4  affects  the  signal  transduction  and  subdomain  localization  of  receptors  via  its
influence on cholesterol trafficking. Since cholesterol-rich rafts are considered to be organization centers for cellular
signal  transduction,  changes  of  cholesterol  concentration  or  distribution  may  have  profound  effects  on  receptor-
mediated  signaling  in  general.  This  mechanism  has  been  shown  to  underpin  the  inhibitory  effects  of  P4  on  OTR
(oxytocin receptor) signaling, not competitive binding to the receptor itself [64].

In  the  process  of  regulation  of  cholesterol  concentration,  PGRMC1 creates  complexes  with  proteins,  e.g.  Scap
(SREBP-cleavage activating protein) and Insig1 (Insulin-induced gene) [26]. After their synthesis in the endoplasmic
reticulum, transcriptional factors, which activate genes encoding enzymes necessary for lipid synthesis SREBPs (Sterol
Regulatory Element-binding Protein), bind to the Scap protein [15]. In the case of sufficient cholesterol concentration,
Insig-1 forms a complex with Scap, what facilitates retention of the Scap/SREBP protein complex in the endoplasmic
reticulum. In turn, in case of cell deprivation of sterols, Scap regulates the transport of SREBPs from the endoplasmic
reticulum to the Golgi apparatus, where the complex is subjected to proteolysis. This event enables SREBPs migration
to the nucleus and leads to the transactivation of genes involved in cholesterol synthesis. The fact that PGRMC1 binds,
both Insig-1 and Scap, confirms its localization in the endoplasmic reticulum and suggests that its function could be
‘sterol detection’ [15, 26, 53].

PGRMC1 is  induced by different  carcinogens,  including dioxins.  It  is  up-regulated in many types of  malignant
tumors, where it promotes cell survival and determines their resistance to damage and also affects tumor vascularization
[52,  53,  65  -  69].  The  PGRMC1  expression  is  augmented  by  chemotherapy,  and  also  in  mouse  cells  with  short
telomeres  and  impaired  chromosomes.  Thus,  the  hypothesis  has  been  made  that  DNA  damage  is  followed  by  an
increase in the receptor expression, and it plays a role in neoplastic promotion. The protein receptor overexpression has
been demonstrated in carcinoma of breast, colon, thyroid gland, lungs, cervix and ovary, what suggests its potential role
as a  marker for  neoplasia [49,  52,  70].  In this  process,  binding PGRMC1 with EGFR could constitute a  key point.
Simultaneously, EGFR inhibitors, e.g. erlotinib/tarceva and tyrphostin/AG-1478 could be effective in antineoplastic
therapy [66].

Significantly less is known about PGRMC2, although it seems that, similarly to PGRMC1, it is necessary for proper
function  of  the  reproductive  system.  It  has  been  proven  in  macaques  that  during  the  secretory  phase,  mRNA  and
PGRMC2  protein  are  expressed  in  functional  layer  of  endometrium,  principally  within  the  luminal  and  glandular
epithelium, what corresponds with simultaneous lack of PGRMC1 and nPR in these locations. It suggests that P4 could
participate in embryo implantation precisely due to PGRMC2 [43]. In turn, through PGRMC1 activation, P4 allows the
maintenance of pregnancy, thus suppressing premature uterine contractile activity and affecting the vascular bed of the
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placenta. Decreased expression of this membrane receptor seems to be one of the key factors necessary for the initiation
of parturition [55, 71]. PGRMC1 with PGRMC2 are probably involved in the functioning of oviduct smooth muscles,
and they form a proper environment conducive to conception and oocyte transport, what has been proven already in
cows [12]. In males, both isoforms could mediate in the acrosome reaction induced by P4 [26, 72].

3.3. Non-classical Activity

Three mechanisms involved in  the activation of  non-classical  pathway have been suggested.  Many aspects  still
remain unresolved and only single pathways, through which progestagens could realize their actions, are being analyzed
in different species.  Mediation of G-proteins,  including typical  α subunit  dissociation from subunits β and γ,  is  the
common reference for these pathways. The first mechanism assumes that progestagens activate MAPK kinases, e.g.
Akt/PI 3, probably through G-protein βγ subunits (it has been proven in case of mPRα and mPRβ in fish), what results
in Erk1/2 phosphorylation, leading to changes in gene transcription [26, 73]. The second mechanism underlines the role
of one of the MAPK – p38, in which mPRα activation in the myometrium leads to phosphorylation of myosin light
chains  [26].  The  third  path  includes  a  suppression  of  adenylate  cyclase  activity.  It  is  also  mediated  by
progestagens/mPRα  signalization  and  subunit  α  of  the  inhibitory  Gi  protein.  As  a  result  of  cyclase  inhibition,  the
concentration of cAMP decreases [36, 47, 74]. However, in the process of activation of this path, the stimulatory G-
protein is also involved (Gs), which could lead to increased cAMP concentration (e.g. in spermatozoa of Genyonemus
lineatus). In the course of non-genomic pathway induction through mPRα and mPRβ, transactivation of the nuclear
receptor and expression of steroid receptor co-activator - SRC2 within the human myometrium becomes impaired [26].

4. HOW BOTH GENOMIC AND EXTRAGENOMIC PATHWAYS COULD AFFECT ONE ANOTHER?

In all likelihood, classical and non-classical pathways could functionally cross, and nuclear and membrane fractions
of receptors could cooperate with one another. The first proof for ‘cross-talk’ between mPR and nPR is based on the
fact that mPR activation through P4 leads to nPRB transactivation. Additionally, mPR activation results in decreased
concentration  of  steroid  receptor  co-activator  2  [75].  The  process  of  initiation  of  parturition  is  an  example  of  a
cooperation between membrane and nuclear fractions of P4 receptors. The decrease in progestagen concentration is
crucial for labor initiation in numerous mammal species [75, 76]. However, a different mechanism, namely the decrease
in  P4  receptors  expression,  has  been  proposed  in  humans.  Normally,  PGRMC1 receptor  synthesis  increases  in  the
course of pregnancy and decreases during parturition. Moreover, its inadequate decrease in the expression could lead to
preterm delivery [55]. In case of nPR, and especially nPRB, the situation is similar: the expression of this receptor in
primates also decreases. The nPRA isoform, which is up-regulated in the myometrium during labor and could suppress
transcriptional activity of nPRB, is the potential mediator in this phenomenon.

Another suggested mechanism is that progestagens influence the myometrium through a non-classical pathway with
the participation of mPR [77]. In early stages of pregnancy, nPRB predominates in the human myometrium and acts
synergistically with mPR. nPRB transactivation is the result of subunit Gi activation. Simultaneously, circulating sex
steroids up-regulate both, mPRα and mPRβ. In turn, mPR activation at the end of pregnancy leads to SRC2 down-
regulation, what together with changed nPRB/nPRA balance leads to a decrease of nPRB transcriptional activity in the
myometrium [75, 77]. As a result, mPR cannot activate nPRB. This cascade of reactions enables P4 to act preferentially
for mPRs during parturition in order to suppress adenylate cyclase activity, leading to smooth muscle phosphorylation
and subsequent contractions [78]. cAMP, the second messenger formed by adenylate cyclase from ATP, is the universal
signal  in the cross-talk between nuclear  and membrane receptors.  It  subsequently activates PKA, leading to CREB
phosphorylation [4]. This, in turn, activates MAPK pathway, resulting in SRC1 phosphorylation. The phosphorylated
forms of pCREB and pSRC1 cooperate in steroid receptor activation. Other mediators, which regulate the cross-talk
between steroid receptors, are proline, glutamine acid, leucine-rich protein 1, or paxillinproteins [1].

Classical  nPR receptors could mediate P4 activity also through the non-genomic pathway. For instance,  human
nPRB contains  poliproline  motif  in  the  amino  acid  domain,  which  interacts  with  SH3 domain  of  Src.  In  this  way,
cytoplasmic PR could mediate P4-induced rapid activation of c-Src and downstream Ras/Raf/ERK1/2, independently of
its  transcriptional  activity.  Activation  of  the  MAPK  pathway  invariably  leads  to  phosphorylation  of  the  following
transcriptional factors: c-Fos, c-Jun and nPR [74].

5. SUMMARY

Membrane receptors mediate a wide spectrum of processes in the body, e.g. acrosome reaction, oocytes maturation,
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autocrine activity in the corpus luteum, steroid and cholesterol metabolism, cellular homeostasis, neuronal excitability,
neuroendocrine effects, behavioral processes, and response to stress. The receptors are situated in many tissues and
organs, displaying a predilection to specific localizations, what has a special significance in both, morphologic and
physiologic aspects. The cooperation between nuclear and membrane fractions of P4 receptors plays a relevant role.
Thus  it  seems  safe  to  hypothesize  that  membrane  receptors  are  necessary  in  a  number  of  processes  for  specific
fulfillment of the activity initiated by nuclear receptors. Taking into consideration a broad distribution and significance
of non-classical pathways and membrane receptors, the aspect of receptor stimulation or inhibition could be useful in
treating multiple pathologies, e.g. some forms of infertility [1, 46].

Plenty of aspects regarding membrane receptors and non-classical pathways are still uncovered or controversial.
Despite a great number of PGRMC1 function aspects which have been described so far, some authors hypothesize that
this receptor could play a role as an adaptor protein, accompanying mPR transport to the cell surface. What is relevant,
the same hormone could induce different effects in various species through non-classical pathway, or the same result
could be achieved by different steroids. Controversies regarding membrane pathway could stem just from this diversity
and heterogeneity [8]. Both, visualization of levels on which nuclear and membrane fractions of the receptors could
reciprocally work, and recognition of every cell and tissue where membrane receptors are expressed, might enable a
new, innovative look at processes which, although known, remain elusive [79].
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